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Abstract—
Music generation is a rapidly evolving trend in machine

learning. Problems that arise when generating something as
subjective as music, is a proper way of evaluation. This work
discusses a method of evaluation and compares four music
generating models according to this method. The models used
in the work are the BasicRNN, the Music Transformer, the
MusicVAE and MuseGAN. The evaluation method, consisting out
of 9 features related to music theory, will be used to compare
these models against each other if a fair comparison can be made.
The evaluation feature that proved to be the most useful is the
pitch class transition matrix. This work will discuss how the
BasicRNN outperforms the Transformer in terms of mimicking
a song, but how the Transformer sounds more interesting. The
different sampling modes in MuseGAN will be analysed and that
a higher temperature when sampling from the MusicVAE usually
leads to a more sophisticated samples.

I. INTRODUCTION

Music has always been something defined and created by
humans. Many animals can’t even perceive music like we do.
It is impossible to state when music got invented, because
we can only assume that the first human beings also had this
feeling for rhythmic percussion and singing that we all have
in us, to a certain extent. While humanity has claimed music
to themselves, some among us managed to create algorithmic
compositions. It was as early as 1957 that Mathews, from Bell
Laboratories, managed to generate the first musical piece. The
advanced rule-based system he implemented, combined with
markov chains or L-systems, led to the composition that was
named the ’Illiac Suite’. By using a Monte Carlo algorithm
for generating random sequences and a selection procedure
based on the theoretical assumptions of Information Theory
(which states that how improbable a message is to occur at
a certain point, the more informative it is), it managed to
generate compositions from scratch [7].
This method could still be considered very human. The rule-
based system was based on music theory created by humans
and influenced by the preference of the programmer. This
resulted in very natural compositions, that followed classical
music theory and did indeed sound like they were made by a
person.
More recently, music generation has been imported to neural
networks. The increase in available data and computing power,
allows one to capture music in a more complex model,
that is able to create its own rules and preferences. Many
machine learning approaches towards music generation have

been implemented over the past decade, often inspired by
model architecture that is used for natural language processing
[3].

As music is a very subjective thing, it is hard to compare
and evaluate any kind of music. This work will discuss some
limitations towards music evaluation as proposed by Yang
and Larch [14], how state-of-the-art machine learning models
compare based on this evaluation, what the limits are of these
models and how they differ from each other. Most of the
models that will serve for comparison are provided by an open-
source Google project called Magenta. The models, described
in Subsection IV-A, are the BasicRNN, the MusicVAE and
a Transformer. A fourth model, called MuseGAN, a GAN
model that can generate multi-track sequences, will also be
discussed. MuseGAN has two different options to generate
music from scratch: inference and interpolation. While the
first uses random noise drawn from the latent distribution,
the second draws the noise as grid. The MusicVAE and
the BasicRNN can influence their output by a scalar called
temperature, which allows the model to differ more, or less,
from input. The following research questions will be answered:
• What differentiates the samples from interpolation and

those from inference in the MuseGAN model?
• Does the Transformer outperform the BasicRNN when

continuing on a primer sequence?
• What is the effect of the temperature of the sampling

mode of the MusicVAE when generating from scratch?

II. BACKGROUND

Music is defined by the way it sounds. Humans have
developed an efficient way to spread music way before there
was any means of recording it: sheet music. Every note one
can play on the piano, one can pen down as sheet music.
Figure 1 is an example of sheet music. It shows which notes

Fig. 1: Excerpt from the score of Chopin’s Piano Concerto
No. 1, taken from [8]

to play, when to play them and their duration. It has its
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notation for silence, called rests. It contains other instructions
on the dynamics of the song, such as volume changes:
crescendos and decrescendos, from loud to quiet and vice
versa respectively, and instructions on the modality, such as
leggierissimo, as seen in Fig. 1, which means very lightly.
Most music generation models, however, do not work with
audio files nor sheet music as input, but instead they use the
Musical Instrument Digital Interface, or midi data. These, in
turn, are often converted to numpy arrays or other encodings
such as one-hot. Midi can be compared to a digital file

Fig. 2: Piano roll based on the score in 1. The horizontal
axis represents time; the vertical axis represents pitch; each

rectangle is a note; and the length of the rectangle
corresponds to the duration of the note, taken from [8]

containing chord music for all the instruments of a song.
Each of the tracks, or pianorolls, define what each instrument
should play. As seen in Fig. 2, a pianoroll visualization
of Fig. 1, one can easily map all the notes and rests from
sheet music to a midi file. What gets lost in this conversion,
however, are all the composer’s suggestions on dynamics. A
midi file can be converted to an audio format, what results
in every note having the same volume and all of the notes
being played at exactly the right time. This makes the music
generated by algorithms often sound very inhumane and
mechanic. The Illiac Suite was performed by a string quartet
after the sheet music was generated. The sheet music did not
include dynamics, but the interpretation of the musicians, and
the fact that its working was still very influenced by humans,
as mentioned in Section I, lead to a very natural result.

III. RELATED WORK

Yang et Larch [14] proposed a method that can be
applied to analyse characteristics or to have an objective
evaluation with interpretable metrics for music. In search of
formative evaluation for (generated) music, they developed a
reproducible, reliable and comparable method for assessment.
The implementation of absolute measures, of which the
roots arise in musical domain knowledge, serve as a tool for
analysis of quantifiable characteristics in the chosen set.

One of the models that will be analysed in this work is a
Variational Autoencoder (VAE), the MusicVAE as presented
by Roberts et al.[10]. It prides itself in the implementation
of a novel hierarchical decoder. In contrast to other VAE’s,
of which the decoder usually exists out of a simply stacked
RNN’s, it passes the latent vector z through a ’conductor’
RNN, which produces an embedding for every subsequence.
All of these embeddings are passed through a fully-connected
layer with tanh activation, that produces initial states for a
final decoder RNN. This decoder autoregressively outputs a
sequence of distributions for each subsequence via a softmax
output layer.
This novel architecture, illustrated in Fig. 20, allowed them
to improve the standard VAE music generation models both
quantitatively and qualitatively.

Another way of creating a latent space to draw samples
from, is by using memory embeddings such as in a Trans-
former. The novel addition added by Huang et al. [6] to
standard Transformer models, was a memory reduction of
the relative attention embeddings. Since musical sequences
tend to be bigger than for example language sequences, for
which the Transformer was originally used (Parikh et al. [9]),
a memory complexity quadratic to the sequence length is
undesirable. The introduced skewing procedure achieves to
reduce the memory complexity to linear, while also speeding
up the computing time by factor 6 for a sequence of length
650.
And while the main focus in the field of music generation is on
generating piano music. Dong et al.’s MuseGAN [4], following
in the footsteps of MidiNet (Yang et al. [15]), proposes 3 GAN
models for multi-track music generation. These models can
generate up to 5 tracks, thus 5 instruments, in their samples.
Their innovative temporal structure embedding, described in
Subsection IV-A4, allows the models, that generate bar per
bar, to remain a more coherent whole between all the separate
bars.
This work will perform an analysis on the models mentioned
above and compare the different methods available for sam-
pling from them.

IV. METHODS

A. Methods for generation

1) BasicRNN: The BasicRNN is the first demo model
launched by Google’s Magenta project. As the name suggests,
it is a recurrent neural network (RNN), which means it has
looped or recurrent connections, allowing the network to hold
information accross inputs. For the BasicRNN, Long Short-
Term Memory (LSTM) cells were used. The network is imple-
mented implemented as a feed-forward network, that is trained
using a gradient descent technique called backpropagation
through time. The model implements a one-hot encoding to
represent extracted melodies to the LSTM’s. It is trained with
MIDI files transposed to the pitch range [48, 84] such that its
output would also be in this interval. This corresponds to the
28th and 64th note on the piano. It is meant for generating
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continuations to an input sequence, often called the primer
sequence. This model is possibly the least interesting presented
in this work, but will serve as a baseline for one of the
experiments.

2) MusicVAE: Google Magenta’s MusicVAE is a Varia-
tional Auto Encoder, a deep latent variable model. Similar to
the regular Auto Encoders, it uses a encoder and decoder. The
encoder is a series of convulational layers that compress the
data into a lower dimension. This is called the latent space
representation. The decoder, also existing out of a series of
deconvulational layers, tries to reconstruct the original data
from the latent space. During training, the loss, calculated as
the difference between the original data and the reconstructed
data, is minimised. The flattened latent space obviously has
a lower dimension, while the input layer has the same di-
mension as the output layer. The latent space, or bottleneck,
is the most important characteristic of auto encoders, as
it compresses it will extract useful features and properties.
What differentiates a Variational Auto Encoder (VAE) from
a regular Auto Encoder, is that the latent space of a VAE
consists out of latent distributions, instead of just values.
This entails that from these distributions, one can sample
the attributes. From these sampled attributes, the decoder can
generate new output. Such models model both p(z|x) and p(z),
where z is the latent vector that can either be inferred from
existing data or sampled from a distribution over the latent
space. A downside of (variational) auto encoders is that they
work with continuous-valued data such as images. Modelling
sequential data typically requires an autoregressive decoder,
which is often sufficiently powerful for the autoencoder to
ignore the latent space (Bowman et al. [2]). Roberts et al.
[10] introduced a sequential autoencoder using a hierarchical
recurrent decoder, the workings of which are illustrated in Fig.
20. By encoding an entire sequence to a single latent vector,
it allows the model to capture longer sequences. The encoder,
qλ(z|x) is a recurrent neural network (RNN). It processes the
input sequence and produces a sequence of hidden states, in
function of which the parameters of the distribution of the
latent code z are set. The decoder, pθ(x|z), sets the initial
state of a decoder RNN using the sampled latent vector z. It
autoregressively produces the output sequence. As with regular
VAE’s, the model is trained to recreate the input sequence
and to train an appropriate encoder close to the prior latent
space.[10]

3) Transformer: Like many other models, the music Trans-
former, another Google Magenta project, takes a language-
modelling approach (Vaswani et al. [13]) and implements it for
music generation. Transformers use a sequence-to-sequence
architecture. Just like autoencoders, this makes them very
useful for things such as translation, and both consist out of
an encoder and a decoder. The transformer’s decoder is an
autoregressive generative model, it primarily uses learned or
sinusoidal position information. Each of its layers consists out
of a self-attention sub-layer followed by a feedforward sub-
layer. The idea behind it is similar to an LSTM, but instead
of an RNN architecture, it is a feedforward network. Fig.

21 portrays the main architecture of a Transformer. Attention
layers first transform the L D-dimensional input vectors X
into Q, K and V . Q = XWQ and contains the vector
representation of one element in the sequence. K = XWK

and represents all the elements in the sequence. V = XWV

and contains the values of all the elements in the sequence.
WQ, WV and WK are all square matrices of size D. Each
L × D query, key and value matrix is then split into H
L × Dh attention heads, indexed by h. The attention heads
have dimension Dh = D

H . A sequence of vector outputs is
then computed for each head using the scaled dot product:

Zh = Attention(Qh,Kh, V h) = Softmax(
QhKh>
√
Dh

)V h

(1)
Using the dot product allows the attention heads to perceive
the intersequential relation between the notes. Two notes from
the same chord in the used key, will probably have a higher
value in the embedding than two random notes. There are
multiple attention heads, which allows the model to give
different context to the same notes. A note following a chord
progression at one point, is not necessarily as relevant later in
the sequence when playing another chord, the multiple heads
allow multiple outputs for the same notes. The outputs for
each head are concatenated and linearly transformed such that
Z becomes a L × D matrix. In the model implemented, the
feedforward sub-layer then takes output Z from the previous
attention sub-layer and performs two layers of point-wise
dense layers on the depth D dimension.

FF (Z) = ReLU(ZW1 + b1)W2 + b2 (2)

Shaw et al. [12] introduced relative position representations
to allow attention to be informed by the distance in position
between two elements in a sequence. A separate relative
position embedding Er of shape (H,L,Dh), that has an
embedding for each possible pairwise r = jk − iq between
a query and key in iq and jk respectively. The embeddings
are set separately for each head and are ordered by distance,
which is a value between −L + 1 and 0. These embeddings
interact with queries to compute Srel, an L× L dimensional
logits matrix. For each head the relative attention is computed
as:

RelativeAttention = Softmax(
QK> + Srel√

Dh

)V (3)

Shaw et al.’s implementation has a total space complexity
of O(L2D) , but using a skewing procedure, Huang et al.
[6] managed to reduce this to O(LD + L2). This memory
requirement is still too high for very long sequences, therefore
relative local attention is introduced, according to Huang et al.,
The concept is to divide the input sequence into blocks that
do not overlap. Each block then attends only to itself and the
block before.

4) MuseGan: MuseGan is short for multi-track sequential
generative adverserial network (GAN). The core of a GAN,
as introduced by Goodfellow [5], is to achieve adversial
learning by constructing two networks: the generator and the
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Model BasicRNN MusicVAE Transformer MuseGAN
Main architecture RNN CNN CNN CNN
Latent space X X X
Generate from scratch X X X
Continue on primer sequence X X
Generate accompaniment X X
Temperature tweaking X X
Interpolation between sequences sampling

TABLE I: Overview of main characteristics of the generative
models

discriminator. The discriminator D is trained to distinguish
the random noise z sampled by the generator G. They are in
a feedback loop with each other, which allows the training
procedure to be described as a two-player minimax game:

min
G

max
D

Ex∼pd [log(D(x))] +Ez∼pz [1− log(D(G(z)))] (4)

with pd the distribution of the real data and pz the prior distri-
bution of z. The model used, uses Wasserstein distance instead
of Jensen-Shannon divergence, as proposed by Arjovsky et
al. [1]. This yields faster convergence to better optima and
requires less parameter tuning, thus the objective function of
D becomes:

Ex∼pd [D(x)]−Ez∼pz [D(G(z))]+Ex̂∼px̂ [(∇x̂||x̂||−1)2] (5)

where px̂ is defined by sampling uniformly among straight
lines between pairs of points sampled from pd and pg , the
model distribution.

The input z̄ to MuseGAN consists out of 4 components:
time independent random vectors z and zi, which are inter-
track and intra-track respectively. Time dependent random
vectors zt and zi,t, again respectively inter-track and intra-
track. On Fig. 22 the workings of the MuseGAN and these 4
components are displayed.

There is a shared temporal structure generator Gtemp that
takes the time-independent vectors zt and a private temporal
structure generator Gtemp,i for the time-dependent random
vectors zt,i for all tracks i. This novel feature is implemented
such that there would be coherence between different bars, as
it models the temporal structure of a track. The generator thus
consists out of two sub networks: the bar generator Gbar and
the temporal structure generator Gtemp. As mentioned above,
Gtemp takes in zt and zt,i and maps it to some latent vectors
−→z which holds the temporal information. −→z is then used by
Gbar to generate music bar per bar. As the above method is for
generating music from scratch, using the GAN to complete a
song, another encoder needs to be added. With bar sequence −→y
and time-dependent random noise

−→
z(t) as input, an additional

encoder, E, needs to be added. E is trained to map
−→
y(t) to the

space of
−→
z(t). This way, the encoder is expected to extract the

inter-track features of the given track instead of the intra-track
features.

B. Comparison of the generative models

As can be deducted in table I, three of the models are
able to generate from scratch. MusicVAE, Transformer and
MuseGAN do this by drawing from their latent space. What

differentiates the models in terms of input, is that the Trans-
former and BasicRNN can take in a short fragment, called a
primer sequence, and predict a next sequence, thus ’complet-
ing’ the song. The MusicVAE can not take in one fragment,
but is able to interpolate two sequences, which results in a
smooth transition from one song to another. The MuseGAN
has two ways to generate samples, either by inference or
interpolation of the latent space. Both the Transformer and
the MuseGAN have a conditional model, which can be used
to generate accompaniment for the input sequence.
The inner workings of these models are very different. The
BasicRNN’s aim is to mimic patterns seen in the training
data and primer sequences. The MusicVAE generates samples
by drawing elements out of the latent space distribution. The
MuseGAN’s generator creates the latent space by trying to
fool the discriminator with sequences that it would classify
as real. Sampling is then done from this latent space. The
Transformer, much like the GAN and the VAE, draws from
its latent space, but this latent space is created according to
the attention mechanics.

C. Method for evaluation

Evaluating music is a very subjective thing. What sounds
good to one person, might not sounds good to someone
else. Although there exist many professional music critics and
among them there, supposedly is a general consensus on what
sounds good and what doesn’t, using these resource can easily
become very expensive and still not very objective. Yang and
Lerch[14] proposed the evaluation of generated music based
on 9 key features: 5 of which harmonic, 4 of them rhythmic
measures. Their objective method provides a good baseline to
distinguish between good and bad samples.

1) 5 features for harmonic evaluation: The 5 features as
proposed by Yang and Lerch are the following:
• Pitch count (PC): a scalar that counts the amount of

different pitches within a sample.
• Pitch class histogram (PCH): an octave-independent rep-

resentation of the pitch content. It has dimensionality 12,
which is the amount of pitches in an octave.

• Pitch class transition matrix (PCTM): A two-dimensional,
histogram-like representation that is computed by count-
ing the pitch transitions for each ordered pair of notes.

• Average pitch interval (PI): a scalar that is the subtraction
of the highest and lowest used pitch within each sample.

2) 4 features for rhythmic evaluation:
• Note count (NC): a scalar that represents the amount of

notes in a sample. It has no regard for pitch nor duration
of the notes.

• Average inter-onset-interval (IOI): the average time be-
tween notes, or more simply, the average duration of
silence in between notes. It is a scalar in seconds for
each sample.

• Note length histogram (NLH): a histogram counting the
occurences of the predefined allowable beat length classes
[full, half, quarter, 8th, 16th, dot half, dot quarter, dot 8th,

4



dot 16th, half note triplet, quarter note triplet, 8th note
triplet]. The values are quantized such that they would
fall under one of the length classes.

• Note length transition matrix (NLTM): a two-dimensional
representation of the rhythmic transition between notes
following each other, similar to the pitch class transition
matrix.

V. EXPERIMENTS

Using the evaluation method introduced by Yang et Larch
[14], the generated samples were evaluated and analyzed.
Three experiments have been conducted:
• Comparison of MuseGAN samples from inference and

interpolation.
• Comparison of PerformanceRNN and Transformer eval-

uated by the 9 key features
• Comparison of the effect of temperature using the Mu-

sicVAE and PerformanceRNN models

A. Experiment 1: inference and interpolation in a Generative
Adversarial Network

Generative adverserial networks, such as MuseGAN, can
generate output in two different ways: either inference or
interpolation. Inference generates samples using random noise
drawn from the latent distribution using training. Interpolation
draws from the same latent space, but instead the noise inputs
are drawn as a grid.
One would expect the interpolation to sound more harmonic,
while the inference would be considered more random.
20 samples were generated using the default MuseGAN model.
The dimension of the latent space is 128, and is trained using
50000 steps with batch size 64 with an initial learning rate of
0.001. The samples are generated for 4 instruments, of which
only the piano will be analysed.

B. Experiment 2: unconditional Transformer and BasicRNN

Both of these models have the option to continue on primer
sequences. This option takes a short sequence as input and tries
to predict sequences to follow, thus generating a continuation.
The two models were used to continue on the 20 samples,
described in Subsubsection V-B1. Both were set up to generate
4096 more steps. The temperature of the BasicRNN model was
set to 1.0.

1) Primer sequences: From the dataset ”Jazz ML ready
MIDI” [11] 20 random songs were selected. The 20 samples
contained songs such as NY State of Mind by Billy Joel and
Celebration by Kool & The Gang. For inputting as primer
sequences, all the tracks other than piano were deleted and
only the first ten seconds were extracted. These are also the
files used for comparison in the results.

C. Experiment 3: influence of temperature on the MusicVAE
model

For this experiment, the MusicVAE generated 20 samples
per temperature from scratch. The temperature was set to
either 0.5, 0.8, 1.0, 1.2 or 1.5. The model used is called

the 16 bar hierdec melody model. It is named after the
decoders hierarchical architecture. It has a latent space of size
512, built using a bidirectional LSTM encoder of dimension
[2048, 2048] and a categorical LSTM encoder. It was trained
with a learning rate of 0.001. The decoder consists out of a 4
hierarchically stacked MultiRNN cells which have dimension
[2048, 2048, 2048]. The temperature of 1.0 will serve as a
baseline for this experiment.

VI. RESULTS

The results described below are based on the first samples
generated by the models when the experiment was run. None
of the samples are curated and the analysis done is based on
the 9 features as described in Subsection IV-C. The following
tables hold the results of the experiments. The features on
the right represent the 9 features proposed by [14]: total
pitch count (PC), total note count (NC), pitch class histogram
(PCH), pitch class transition matrix (PTM), pitch range (PR),
average pitch shift (AvgPS), average inter-onset-interval
(IOI), note length histogram (NLH) and note length transition
matrix (NLTM).

A. Experiment 1

Sample mode Interpolation Inference
PC avg 46.4 68.35

std 33.48 15.59
NC avg 1538.9 1693.55

std 540.54 296.18
PCH avg 0.08333 0.08333

std 0.08579 0.01981
PTM avg 43.32 48.11

std 30.72 22.62
PR avg 62.3 72.75

std 23.56 11.21
AvgPS avg 15.27 13.14

std 5.10 3.87
IOI avg 0.05161 0.04617

std 0.01395 0.009657
NLH avg 0.08333 0.08333

std 0 0
NLTM avg 10.67 11.75

std 3.753 2.056

TABLE II: Experiment 1: Comparison of MuseGAN’s
sample modes; inference versus interpolation when

generating from scratch, using the 9 key features proposed
by Yang et Larch [14]

The results of the measurements of experiment one can be
seen in Table II. Fig. 3 and Fig. 4 display the heatmaps of the
pitch transitions, for interpolation and inference respectively.
All of the notes used in all of the samples, only contained 16th

notes. The histograms representing the average pitch counts in
the samples are presented in Fig. 5 for interpolation and Fig.
6 for the samples generated with interpolation.
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Model / dataset Primer Transformer RNN
PC avg 19.05 34.2 28.65

std 7.605 16.32 5.387
NC avg 93.45 187.95 1555.8

std 46.63 92.88 1006.5
PCH avg 0.08333 0.08333 0.08333

std 0.1005 0.09631 0.06578
PTM avg 0.05069 0.06805 0.07986

std 0.1090 0.09677 0.09439
PR avg 47.85 56.9 31.55

std 10.07 18.17 4.128
AvgPS avg 10.65 9.998 3.875

std 3.447 5.046 1.235
IOI avg 0.1098 0.1167 0.4931

std 0.07476 0.0549 0.2646

TABLE III: Experiment 2: Performance of the Transformer
model compared to the BasicRNN when continuing primer
sequences, using the 9 key features proposed by Yang et

Larch [14].

B. Experiment 2
Table III displays the averages of the results of experiment

2. One can see how the average note count for the RNN
is many times higher than for the Transformer. While the
samples of the Transformer were around 90 seconds long,
the files the RNN outputted were around 5 to 9 minutes
long. The average pitch count for the Transformer is 34.2,
on an average note count of 187.95. It has an average pitch
range of 56.9 and its average pitch shift is 9.998. The pitch
transition matrices, seen in Fig. 7, Fig. 8 and Fig. 9, are
heatmaps representing the pitch transitions of the samples
of the primers sequences, the samples generated using the
Transformer and the samples generated using the BasicRNN.
Figure 10 represents the different note lengths that were used
in the samples generated by the Transformer. The note lengths
used by the BasicRNN were mostly 8th and 16th notes.

C. Experiment 3

Temperature 0.5 0.8 1 1.2 1.5
PC avg 14.1 13.3 14.5 16.55 15.55

std 4.998 4.889 4.031 6.028 6.938
NC avg 76.75 73.25 81.9 74.8 71.65

std 22.06 23.60 29.39 32.01 24.10
PCH avg 0.08333 0.08333 0.08333 0.08333 0.08333

std 0.09882 0.09002 0.081941 0.07774 0.07168
PTM avg 0.05520 0.05069 0.05972 0.05486 0.05763

std 0.1278 0.1107 0.1243 0.1142 0.1135
PR avg 26.45 24.45 22.75 31.2 26.35

std 13.78 16.61 9.337 17.03 13.45
Avg PS avg 4.218 3.309 3.9555 4.172 4.317

std 2.119 1.804 2.4320 1.822 2.315
IOI avg 0.4620 0.4740 0.4557 0.5070 0.4857

std 0.1959 0.1251 0.2078 0.2003 0.1350
NLH avg 0.08333 0.08333 0.08333 0.08333 0.08333

std 0.06950 0.07208 0.06498 0.06507 0.06915
NLTM avg 0.52604 0.5017 0.5618 0.5125 0.4906

std 0.7408 0.7736 0.7997 0.7231 0.7653

TABLE IV: Experiment 3: Comparison of the difference in
temperature in the MusicVAE model, using the 9 key

features proposed by Yang et Larch [14]

Table IV contains the results obtained from experiment 3.
Fig. 12 displays a histogram portraying the average note counts

per pitch per temperature. Fig. 13 contains the histograms per
temperature for the note lengths. The pitch class transition
matrices for temperature 1.0, 0.5 and 1.5 can be found in Fig.
14, Fig. 15 and Fig. 16 respectively.

VII. DISCUSSION

The features that have proven to be the most useful from the
9 features by Yang et Larch [14], are the pitch class transition
matrix, the note count and pitch class count histograms and
the pitch range. Using the pitch class transition matrix, one
can deduct whether samples use the same melodic patterns.
The pitch range reveals a lot about ’wide’ a sample’s melody
is. Visualizing how often certain notes and pitches are used,
helps a lot for arguing whether samples are alike.

A. Experiment 1

As seen in Table II, the biggest difference between the two
models is found in the melodic measurements. The average
pitch count for inference is higher than for interpolation, at
68.35 and 46.4 respectively. The standard deviation for the
first is way smaller than for the latter, which implies that
the difference using interpolation is way bigger in between
samples regarding the different pitches used. That inference
uses melody more freely, can also be deducted from the pitch
range, for which the average is about 10 higher.
When comparing the transition matrix to the average pitch of
the inference samples, we notice that the pitch shift is 13.14,
which is close to 12, the amount of pitches in an octave. Thus
the samples often jump exactly one octave. The fact that the
pitch count for the samples generated using inference instead
of interpolation, give rise to the suspicion that the grid used
when sampling is often drawn on notes such as C\, D\ and
F\.
Comparing the heatmap and the pitch count for sampled
generated using interpolation, Fig. 3 and Fig. 5, it is surprising
how F\ does not have a clear pattern of being followed by
another note, except for itself, although it is the most used
note. In contrast, D\ is often followed by itself and besides
that it is one of the preferred successors of both C\ and BZ.
The note count for samples made with inference, Fig. 6,
reveals a preference for natural pitches. Especially E, G and
A. All the natural pitches, except for F (F\ is used instead)
are part of the E natural minor scale, which leads one to think
that sampling using inference has a preference of playing in
E natural.
Rhythmically one would assume that the samples would be
more alike. All of the notes used in all of the samples, only
contained 16th notes. A tiny difference in the average inter-
onset-interval, however, makes it clear that these sample do
differ rhythmically.
One can conclude that interpolation using the MuseGAN
model generates samples that are melodically less varying,
as the three most used notes make up for more than half
of the notes played, as seen in Fig. 5. Interpolation has a
wider variety of transitions, whereas inference often leads to
the one pitch being followed by the same pitch, not regarding
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octaves. Rhythmically the sampling modes are much alike,
using only 16th notes, but implementing breaks at slightly
different times. This raises the suspicion that the sampling
mode doesn’t change the rhythmical aspects of the generated
samples.

B. Experiment 2

Rather non-surprising, it is clear that the Transformer uses
quite some more pitches. It is impressive, however, how it
uses that much more than the BasicRNN. With an average
pitch count of 28.65 on an average note count of 1555.8, it
is clear that the BasicRNN uses a lot of repetition. From the
pitch transition matrices, Fig. 7, Fig. 8 and Fig. 9 one can
spot the similarities between the one of the primer sequences
and the one of the BasicRNN. This entails that the BasicRNN
mimics a transition more often than the Transformer does.
The latter, however, shows the same pattern spotted as in the
MuseGAN model, showing a clear preference of following a
note with the same note, possibly an octave higher or lower.
From Fig. 10, the note length histogram for the samples of
the Transformer, one can deduct that it samples use a wide
variety of note lengths, having a preference for 16th notes,
which is unsurprising given that these notes, apart from being
the shortest, usually follow each other up. This is confirmed
by inspecting Fig. 11, representing the note length transition
matrix of the Transformer. The occurrence of triplets, as well
as the dot 8th and dot 16th notes in combination with their
regular counterparts, implies that the Transformer is able to
sample complex rhythmical structures.
The Transformer clearly generates more interesting samples,
but in a comparison of which model continues the primers
better, the BasicRNN wins. The samples generated by the
Transformer sound good and coherent, while the samples from
the RNN are often very repetitive and have a high inter-onset-
interval, meaning that there are a lot of silences.

C. Experiment 3

A first thing that comes to the attention when inspecting
the results, is that is a hard to find a real connection between
the temperature and certain characteristics. Apart from a very
similar average note and pitch count, the average inter-onset-
intervals are nearly the same. With a pitch range remarkably
higher at temperature 1.2, measuring at 31.2, it nears the
baseline again at temperature 1.5. Less subtle differences can
be found in the pitch class transition matrices, for which the
temperature changes the recurrent sweet spot. Temperature 1.0
transitions the most often from C to C, while at temperature
0.5 and 1.5 this changes to G and D respectively. Further-
more, an increase in temperature leads to lower values in the
diagonals, implying that an increased temperature highers the
chance of a note not being followed by the same note. The note
length histogram shows a clear preference for 8th notes when
the temperature is 1.0. A change in temperature, most notable
at temperature 0.5 and 1.5, leads to more varied rhythmical
features, such as in increase in triplets and dot 8th notes. The
transition matrix for temperature 1.0 shows a clear preference

for following up 8th notes by each other. With a temperature
of 0.5, it gives rise to combination of 8th notes paired with
both 16th and quarter notes. A temperature of 1.5 leads to
samples with a higher rate of 16th notes. From the transition
matrix one can clearly notice an increase in the dot 8th notes
followed by 16th, a more complex rhythmical structure.
The temperature used when sampling from MusicVAE, has a
subtle difference on the output. The higher the temperature, the
higher the complexity of the rhythmical features. Furthermore,
it yields a higher chance of notes not being followed by each
other, thus acquiring a higher variety in the pitch intervals.

VIII. LIMITATIONS

A. Training of the models

Training of these complex models is both computationally
heavy and resource intensive, therefore it was not possible
to train models on the same datasets during the scope of
this project. Many attempts were made to train the different
models, namely multiple GAN models and Transformers, but
without any good results. On small datasets, it was achieved
to train the MusicVAE and RNN models, but they were
no fit comparison to each other, since one is mainly used
to generate from scratch and the other for continuation on
primer sequences.
This limitation led to a change in the scope of the project.
Originally, the goal was to make an objective comparison of
the different models when used to generate from scratch. The
inability to train the models on the same dataset, would lead
to an unfair comparison.

B. Ambiguous information on the training data

For all models described in this work, no or ambiguous
information on the training data was provided. In order to
have an objective measurement for our evaluation method
used, generated samples should be compared to the dataset
they were trained on.

C. Evaluation method limited to one instrument

Unfortunately, the evaluation method implemented only
works with one instrument: piano. The functions could be
rewritten to work for multiple elements, but the scope of
this project, of which the main focus is piano music, did not
include further adaptation of the evaluation method.

IX. CONCLUSION

In this work an analysis of different music generating mod-
els and their setups has been made. The limitations mentioned
in Section VIII, lead to results that are not measurable when
comparing different models to each other.
Samples generated by the MuseGAN are rhythmically equal to
each other, regardless whether these samples were generated
using interpolation or inference. Inference yields samples with
more melodic variety, although the same notes are more often
played after one another. The samples have a significantly
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higher concentration of natural tones and often follows the E
natural scale. Interpolation generates three certain notes, C\,
D\and F\, a lot more often than all the others. Of these notes,
the last one is often used for transitioning to other pitches,
while the first two are, especially D\, are usually played back
to back.
When continuing on primer sequences, the Music Transformer
generates samples that are more complex and interesting
compared to the BasicRNN. The BasicRNN implements a lot
of breaks, but its output has more similarities to the primer
sequence than the Transformer’s samples.
Samples generated from scratch using the MusicVAE, are
influenced by the temperature with which these were gener-
ated. The higher the temperature, the less the samples contain
pitches transitioning into itself. An increase in temperature
also gives rise to more complex rhythmical features, such as
the use of triplets and the combination of using dotted notes
together with their regular counterparts.
Of the 9 features, the most expressive in terms of comparison
were the pitch class transition matrix, the note count and pitch
class count histograms and the pitch range.
To form an objective comparison of the models presented in
this work, future work consists out of training the models
on the same dataset and using the measures of evaluation
to calculate a scalar, measuring the inter-set and intra-set
distances between samples generated and the dataset on which
the models would be trained. Furthermore, elements such as
chord progression could be implemented such that one could
generate tracks, or accompaniment, based on a preexisting
chord progressions used in projects. This would allow these
techniques to be used a tools for musicians.
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Fig. 3: Heatmap of the pitch transitions from samples
generated using MuseGAN’s interpolation

Fig. 4: Heatmap of the pitch transitions from samples
generated using MuseGAN’s inference

Fig. 5: Histogram of the pitch occurences in MuseGAN’s
interpolation samples

Fig. 6: Histogram of the pitch occurences in MuseGAN’s
inference samples

Fig. 7: Pitch Transition matrix of the primer sequences
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Fig. 8: Pitch Transition matrix of the samples generated with
the Transformer model

Fig. 9: Pitch Transition matrix of the samples generated by
the BasicRNN

Fig. 10: Note Length histogram of the samples generated
with the Transformer model

Fig. 11: Note Length Transition matrix of the samples
generated with the Transformer model

Fig. 12: Histogram containing the average counts per pitch
per temperature for experiment 3
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Fig. 13: Histogram containing the average counts per note
length per temperature for experiment 3

Fig. 14: Pitch class transition matrix for samples from the
MusicVAE model with temperature 1.0

Fig. 15: Pitch class transition matrix for samples from the
MusicVAE model with temperature 0.5

Fig. 16: Pitch class transition matrix for samples from the
MusicVAE model with temperature 1.5

Fig. 17: Note length transition matrix for samples from the
MusicVAE model with temperature 1.0
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Fig. 18: Note length transition matrix for samples from the
MusicVAE model with temperature 0.5

Fig. 19: Note length transition matrix for samples from the
MusicVAE model with temperature 1.5
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Fig. 20: A visualisation of the MusicVAE model

Fig. 21: A visualisation of the Transformer model
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Fig. 22: A visualisation of the MuseGAN model
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