
Fine-Tuning Methods for Diffusion Models

Jan-Felix De Man1[2750183]

Supervisor: Anil Yaman, Akshay Singh⋆

Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam

Abstract. In this study, we examine the efficacy of various fine-tuning
methods for generative models with the goal of producing high-quality,
specific object-oriented images. We specifically focus on Dreambooth,
Textual Inversion, and Low Rank Adaptation (LoRA) fine-tuning meth-
ods for an image model fine-tuned to generate variations of a cloth-
ing brand’s logo. Evaluations are performed using a custom scoring sys-
tem that utilizes an object detector and Optical Character Recognition
(OCR) system to evaluate how well the generated images match the
desired prompts.

Our results indicate that the Dreambooth fine-tuning approach outper-
forms the others, displaying a 100% success rate in logo detection with an
average confidence score close to 95%. Unfortunately, these results were
imitations of the training set, since the overfitted model lost its abil-
ity to generate new images. Textual Inversion performs less effectively,
demonstrating some conceptual understanding of the logo but failing to
capture all the details accurately. The LoRA models score reasonably
well but are notably less successful in generating an image with the logo
consistently.

Our findings illustrate that fine-tuning a diffusion model is a tedious
process, which often leads to a model that fails to generalize, or not
learns at all. Results indicate that LoRA provides a good generalization
at the cost of lower consistency.

1 Introduction

Image synthesis is a field with a lot of spectacular recent developments. Diffusion
models, such as OpenAI’s Dall-E 2 [13], allow users to generate an image from
any text prompt. This ability will change the way individuals and companies
look at graphic design, illustrations and pictures. Metyis, a consultancy with a
drive for digital transformation, is interested in providing its clients with custom
image generation models. These companies would then be able to generate their
products within any kind of context, or to use these models to draw inspiration
for new designs. In order to achieve this, Metyis would either have to train a

⋆ Metyis, De Entree 69, 1101 BH Amsterdam

2 J.F.M. De Man

diffusion model of their own, or fine-tune a pre-trained diffusion model to include
their desired item and style.

This work will focus on the latter. By using fine-tuning methods such as
Dreambooth, Textual Inversion and Low Rank Adaptation, the objective is to
establish an efficient fine-tuning approach that allows Metyis’ clients to generate
images, consisting mostly out of fashion items, within their specified style or
to generate realistic images of their actual products. This could be of value by
replacing human models in photo shoots, assisting in marketing campaigns, and
to help in the creative flows of the designers. The following research questions
will be addressed in this work:

1. How to evaluate the fine-tuning methods over a specific data set?
2. What are the characteristics of each fine-tuning method?
3. Which of these methods provide a generalizable and scalable solution?

It is hard to evaluate images that might only differ slightly. The stochastic nature
of diffusion models, given that their generation process commences with random
noise, further complicates the comparison between models, and the manual as-
sessment involved presents a labor-intensive task. The methods of evaluation for
such a task are still unclear. Common metrics like FID score are hard to apply
to a limited data set and do not relate to our desired outcome. Therefore a new
evaluation metric is proposed within the context of our data set. Since each of
the methods are vastly different, finding their characteristics will give a lot of
clarity to which method would be best for each use-case. Some methods are bet-
ter at recreating the data set, while others excel at extracting elements from the
data set and applying it to new contexts. It is important to decide on a relevant
approach for each future use-case, as to not waste any valuable resources.

Finally, the goal of this work would be to provide a general approach that
should work within most of the use-cases. In other words, the method that is
able to extract and generalize over our training data will be selected. In the
Related Work section one can find a small description and timeline of diffusion
models in general, as well as an overview of the fine-tuning methods in their
original context. The Methodology section goes over the diffusion processes and
how the fine-tuning methods have been applied to Stable Diffusion in this work.
The Experiment Design section will go over the data set used, the method of
evaluation implemented in this work and the overall design of the experiment.
The Results section presents the results of the experiment using our evalua-
tion method. The Future Work section contains means of improving this work
in future iterations while the Discussion section goes over the main points of
discussion and concludes the work.

2 Related Work

Diffusion models are inspired by the laws of Non-equilibrium Thermodynam-
ics, its first application in Deep Learning was proposed by Sohl-Dickstein et al.
[20](2015). The idea behind is to retrieve the original state of an object, in this

Fine-Tuning Methods for Diffusion Models 3

case an image, after several changes have happened to it by means of a Markov
chain. In the case of image synthesis diffusion models, the changes usually rep-
resent random Gaussian noise. This is called the noising process and happens
stochastically. The denoising process then tries to retrieve the original picture
from the fully noised picture. To achieve this, the model tries to predict which
noise was added at every time step of the Markov chain. This method of un-
supervised learning tries to estimate the mean and covariance for the Gaussian
diffusion kernel. Originally, multi layer perceptrons were used for this task [20],
but Ho et al. [4] (2021) introduced the use of UNet models [15].

As can be seen in Fig. 1, the UNet model consists out of several bottle-
necks that aid with edge detection, these bottlenecks also have skip connections
implemented to not lose any information. The denoising UNet model also con-
tains encoder and decoder blocks, self-attention modules and sinusoidal time
embeddings. The encoder-decoder structure is designed to capture hierarchical
representation of the input data. Since not all regions have equal importance
at every time step, self-attention mechanisms were introduced by Hu et al. [6].
These blocks perform two main operations: Squeeze and Excitation (SE). The
squeeze operation reduces the spatial dimension by applying average pooling.
The excitation operation applies fully connected layers to learn the importance
feature of each channel and generate a channel-wise attention map. The input
it receives is the input at time t of the denoising process and the time t itself.

Fig. 1: UNet architecture for Diffusion Models

Classifier guidance, introduced by Dhariwal et Nichol [2] (2021), introduced
conditional diffusion models, which allow to guide the denoising process by
adding a label as a conditional. This was later extended to Classifier-Free Guid-
ance, first introduced in GLIDE [10] (2022), allowing diffusion models to take in
any text input as a conditional to guide the generation process.

Efficient fine-tuning of large neural networks is an increasingly popular re-
search area. Since the rise of extremely large model architecture, such as LLMs
or large diffusion models, there is more and more demand for transfer techniques
to use these models for smaller and more specific tasks.

4 J.F.M. De Man

In the case of diffusion models, a popular approach for fine-tuning UNet
architectures, known as Dreambooth as introduced by Ruiz et al. [16], has gained
significant attention. The primary goal of Dreambooth is to incorporate new
subjects into the model with minimal reliance on additional training images.
This is achieved by embedding a new (unique identifier, subject) pair into the
diffusion models’ dictionary. Any uncommon token with a weak prior can serve as
the unique identifier. Following the example of [16], let’s assume [V] as our chosen
unique identifier. Consequently, the prompts for fine-tuning become as simple
as A [V] dog. The model (with frozen text encoder) is then trained on our data
set. In order to prevent overfitting on the subject images, a class-specific prior
preservation loss is introduced. This involves generating images of the subject
noun (dog) using the original model. The paper is based on the Imagen diffusion
model [18], which employs cascaded super-resolution diffusion models. First a
64× 64 image is generated, which is later upsampled into a 256× 256 image and
then to 1024× 1024.

A more efficient approach is the implementation of Low Rank Adaptation
for Large Language Models (LLMs). Inspired by the observations of Li et al. [8]
that the learned over-parameterized models reside on a low intrinsic dimension,
Hu et al. [5] hypothesised that the change in weights during model adaption also
has a low intrinsic rank. Full fine-tuning of LLMs can be described as updating
the pre-trained weights Φ0 to Φ0 + ∆Φ by means of the conditional language
modeling objective:

max
Φ

∑
(x,y)∈Z

|y|∑
t=1

log(PΦ(yt|x, y<t)) (1)

It is important to note that Φ0 and Φ0+∆Φ have the same dimension, which,
for some models, can be extremely large and thus very expensive. Not only does
training consume a lot of resources, the fine-tuned model is also of large size and
thus storage and deployment of such models can be challenging. That is why
a parameter-efficient approach was proposed, where the task-specific parameter
increment ∆Φ = ∆Φ(Θ) is further encoded by a smaller-sized set of parameters
Θ with |Θ| ≪ |Φ0|. The objective can be rewritten as:

max
Φ

∑
(x,y)∈Z

|y|∑
t=1

log(PΦ(yt|x, y<t)) (2)

where the trainable parameters |Θ| can be as small as 0.01% of |Φ0|. In practice,
when considering a pre-trained weight matrix W0 ∈ Rd×k, it is represented as
W0 + ∆W = W0 + BA where B ∈ Rd×k, A ∈ Rr×k with rank r ≪ min(d, k).
During training, W0 is frozen and does not receive gradient updates, while A
and B contain trainable parameters. The rank r thus represent the low intrinsic
dimension, which is a parameter that can be tuned depending on the complexity
of your task.
The key advantages of this approach are that these trainable parameters |Θ| are

Fine-Tuning Methods for Diffusion Models 5

smaller in size, allowing easy sharing and even swapping for different subtasks.
The computational requirements for training these weights is considerably lower
and there is no additional latency for inference when using these adaptations.

Textual Inversion, a method introduced by Gal et al. [3] aims to place new
words into the tokenizer of the text embedding model used by diffusion models.
In order to do this, a new pseudo-word is introduced, denoted by S∗, which can
then be used to compose novel text prompts. In conditional image generation
using diffusion models, during inference time the first stage usually consists out
of creating a numerical embedding for our text input. The tokenizer splits the
words into tokens which get mapped to a dictionary, where each entry has it’s
own vector that embeds its meaning. These embeddings are usually learned
as part of the training process. Textual Inversion adds a new token S∗ to the
tokenizer and freezes the rest of the model, including the other parts of the text
encoder. In this fashion, it tries to find the optimal embedding for our token
S∗, such that the model would learn interpret said token and create new images
that have this concept. A diffusion model can be described as:

LDM := Ey,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (zt, t, cθ(y))∥22

]
, (3)

where t is the time step, zt is the noise at time t, ϵ is the unscaled noise sample,
and ϵθ is the denoising network. The optimization goal for Textual Inversion
likewise becomes:

v∗ = argminvEy,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (zt, t, cθ(y))∥22

]
(4)

The same training scheme for training diffusion models can thus be used, with
the difference being that both cθ and ϵθ are frozen and thus their parameters not
trained. This allows to fine-tune diffusion models, without distorting output for
other text prompts. In other words: if S∗ is not called, the added token would
not influence the output.

3 Methodology

Diffusion models have a couple of processes that are important to understand
in order to fully grasp the effect of the fine-tuning methods. In this section the
mathematical workings of the diffusion processes will be explained, as well as
how the fine-tuning methods were implemented, and in the case of LoRA, were
adapted to use for diffusion models.

3.1 Diffusion Processes

The diffusion process consists out of two main steps, the noising process followed
by the denoising process. In the physical context, diffusion would only relate to
the noising process, but in the context of generative deep learning, the key is to
restore the original asset from a completely diffused object. The reverse diffusion

6 J.F.M. De Man

process is therefore very powerful, as a completely diffused object could be as
much as, or as little as, random noise. Drawing random noise is an easy task,
therefore the denoising module in diffusion models are often referred to as the
generator, as it can generate assets out of practically nothing.

Forward Diffusion Process The noising process, or the forward diffusion
process, of a data point sampled from a real data distribution x0 ∼ q(x) can be
defined as adding a small amount of Gaussian noise to the sample in T steps,
producing a sequence of noisy samples x1, ..., xT . The step sizes are controlled
by a pre-defined variance schedule {βt ∈ (0, 1)}Tt=1, such that:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (5)

q(x1:T |x0) = ΠT
t=1q(xt|xt−1) (6)

This can be more easily described, in the setting of image generation, by adding
a small noise to every pixel for T steps. The multiplication represents the odds
that one would end up with that certain noised image.

Reverse Diffusion Process The noising process can be reversed, thus sam-
pling from q(xt−1|xt), reconstructing the true sample from a Gaussian noise
input xT ∼ N (0, I). In other words, this process tries to turn the noised image
back into the input picture. q(xt−1|xt) can only be estimated by fitting it on the
entire data set, which is infeasible. We need to learn a model pθ to approximate
these conditional probabilities in order to perform the reverse diffusion process.

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),
∑
θ

(xt, t)) (7)

pθ(x0:T) = p(xT)Π
T
t=1pθ(xt−1|xt) (8)

A reparameterization trick of the forward diffusion process, in the form of:

xt =
√
atxt−1 +

√
1− αtϵt−1 (9)

√
αtαt−1xt−2 +

√
1− αtαt−1ϵ̄t−2 (10)

with αt = 1 − βt and ᾱ = Πt
i=1αi, allows us to get to the final step with

one calculation. Stochastic differential equations are typically ill-posed, meaning
that a solution might not exist or is not unique, which makes them practically
intractable. The reverse diffusion process is only tractable by assuming Gaussians
at every time step, instead of combinations thereof. This assumption allows us
to only estimate the mean and variance of the Gaussian distribution.

In other words; if the denoising process is described as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),
∑
θ

(xt, t)) (11)

Fine-Tuning Methods for Diffusion Models 7

then we would like to learn µθ to predict µ̃ = 1√
(αt)

(xt − 1−at√
(1−āt)

ϵt).

Since xt is available as input at training time, we can reparameterise the Gaus-
sian noise term instead; meaning that instead of predicting the Gaussian distri-
bution at every step, we predict the added noise. This simplified loss, introduced
by Ho et al. [4], not only simplifies the process, but also leads to better results
and faster convergence.

A preliminary objective In VAEs you have ELBO loss, a bound on the true
log likelihood:

−LVAE = log pθ(x0)−DKL(qϕ(z|x)) ≤ log pθ(x) (12)

Apply to diffusion:

− log pθ(x0) ≤ Eq(x0:T)[− log
pθ(xo:T)

q(x1:T |x0)
] = LLV B (13)

LLV B = LT + LT−1 + . . .+ L0 (14)

where LT = DKL(q(xT |x0))||pθ(xT)), Lt = DKL(q(xt|xt+1, x0)||pθ(xt|xt+1))
and L0 = − log pθ(x0, |x1)

3.2 Latent Diffusion Models

Latent Diffusion Models (LDMs), introduced by Rombach, Blattmann et al.
[14], enabled training on limited computational resources while retaining the
quality and flexibility, by applying them in the latent space of pre-trained auto-
encoders. Encoder E and decoder D ensembles, as seen in Fig. 2, were first
trained to compress an input image x ∈ RH×W×3 into a latent representation
z ∈ Rh×w×c, such that z = E(x) and x̃ = D(z) = D(E(x)). The auto-encoder in
Stable Diffusion has a reduction factor of 8. An image of shape (3× 512× 512)
becomes a latent of size (3×64×64). This requires 8×8 = 64 times less memory
[14]. Cross-attention layers were introduced into the model architecture, allowing
powerful and flexible generation for conditional inputs, such as text or bounding
boxes. This leads to high-resolution synthesis in a convolutional manner.
The rest of the architecture of Stable Diffusion, Fig. 2, consists out of UNet
architecture as the denoiser, and a CLIP text embedding model to process the
conditional input.

3.3 Fine-Tuning Methods

Since the scope of this work is limited in both time and resources, the fine-tuning
will be done on the pre-trained LDM called Stable Diffusion [14], which is the
open-source discussed above.

8 J.F.M. De Man

Fig. 2: Architecture of the LDM, with encoder E and decoder D, and the atten-
tion condition implementation.

Source: [14]

Dreambooth Our implementation of the Dreambooth model in the context
of Stable Diffusion involves a constrained approach wherein the majority of the
model’s parameters are held constant during training. Particularly, we only allow
the parameters of the denoising UNet to undergo adaptation, which is named ϵθ
in Fig. 2. In the scope of this project, no prior loss preservation mechanics were
implemented. This will make this method prone to overfitting and might cause
the model to take over characteristics of our data set, even when generating
prompts that do not include our unique identifier. The output of this fine-tuning
method are UNet weights fine-tuned on our data set, and have a size of 2.13GB.
As outlined in section 2, our fine-tuning process employed a series of simple,
identical prompts. The specifics of these prompts and the rationale behind their
selection are further elaborated upon in section 4.3. A learning rate of 1e − 5
is recommended in [16], in this work we experimented with 1e − 5, 2e − 5 and
5e− 5.

Textual Inversion The implementation of Textual Inversion is by alternating
the embedding for a certain token. In Stable Diffusion, this text encoder is the
CLIP ViT-L/14 [11]. It is a model that measure the cosine similarity between
images and their captions. In this context, CLIP, denoted as the condition layer
in Fig. 2, is used to embed the text prompt such that it can serve as input for
the denoising UNet. A learning rate of 1e − 4 is proposed in [3], we performed
experiments with the learning rates 1e − 3, 1e − 4, 5e − 4, 1e − 5, 2e − 5 and
1e− 6.

Low Rank Adaptation In the context of diffusion models, Low Rank Adapta-
tion (LoRA) is commonly employed in the UNet module of the network [17]. As

Fine-Tuning Methods for Diffusion Models 9

illustrated in Figure 1, this module comprises several building blocks. Previous
work [5] suggests that achieving good results often involves tuning the attention
layer. In LoRA, the attention layer is modified by introducing injectable weights
of a specific dimension, denoted as r. Note that B ∈ Rd×k, A ∈ Rr×k, where d is
the rank of the attention layer in which the weights will be injected. A higher r
thus means more granular control over the influence of your LoRA embeddings.

The choice of r allows for fine-tuning the attention mechanism according
to specific requirements and performance objectives. In this work, a lot of ex-
periments were conducted in order to investigate the effect of the rank of the
embeddings and the ideal learning rate. The models were trained in combination
with Textual Inversion, with variable learning rates for the text encoder. Note
that a low learning rate for the text encoder, thus applying Textual Inversion,
has little result by itself, this process aids to give better embeddings to your new
token. The hyperparameters that were experimented with in this work can be
seen in Table 1. A total of 53 = 125 LoRA models were trained.

Table 1: Grid Search Parameters for Fine-tuning using Low Rank embeddings.
unet lr text encoder lr network dim

5e-6 5e-6 4
1e-4 1e-4 8
1e-5 1e-5 16
5e-5 5e-5 32
1e-6 1e-6 64

4 Experiment Design

4.1 Data set

It was decided to stick to one specific logo for the scope of this project. This
way, it would be possible to provide a POC that we could generate new clothing
items with said logo or use it to create creative assets. To find a large enough
data set, all images on the Hugo Boss product pages were scraped if the product
name included logo. Out of the thousands of images that were gathered this
way, 150 contained a red HUGO logo, which was picked to be our data set. The
49 images in which the logo was large enough, make up the data set for fine-
tuning the diffusion model. Fig. 3 shows four pictures of the data set, with their
corresponding labels. All the pictures have been hand-labeled and our unique
token red hugo logo was in all of these labels. Since diffusion models work with
square images, transparent margins were added to all images, which are ignored
by our model’s set-up.

10 J.F.M. De Man

Fig. 3: Four example pictures from the training data, with prompts black shorts
with a red hugo logo on it (top left), a black sweatshirt with a red hugo logo on
the chest (top right), a male model wearing a black t-shirt with red hugo logo on
it (bottom left), a black hat with a red hugo logo on the front(bottom right).

4.2 Evaluation

The performance of image generation models is often measured using the Frechet
Inception Distance (FID). This metric finds its root in the Inception Score (IS),
introduced by Salimans et al. [19]. IS utilizes the Inception convolutional neural
network [21] trained on ImageNet, for which generated images with meaning-
ful objects should have low label entropy, meaning that they could only belong
to a few object classes. Meanwhile there should be enough diversity, meaning
that a high amount of object classes should be predicted. The pitfall is that IS
does not take the training data into account. Often the data set contains objects
not present in ImageNet, and the relation between the data set and the gener-
ated images is not captured. Therefore FID was introduced. The FID takes the
Inception model’s intermediate layer activations from both real and generated

Fine-Tuning Methods for Diffusion Models 11

images, assumes these activations are Gaussian distributed, and then calculates
the Frechet distance between these two Gaussian distributions. The more similar
these distributions are, the more similar the data distributions of real and gen-
erated images and thus the better the generative model is. The aim of this work
is to achieve good output with limited data, as well as generating our one sub-
ject only, which is the reason why the FID score is discarded as a possible metric.

Since the nature of our task, we want our output to resemble the input, or
the logo displayed in the input, as much as possible. Inspired by IS, an object
detection model can be used to detect whether the generated images do in fact
contain the logo. The 150 images with the our red logo described in 4.1, together
with high-quality generated images from the first model and social media content
portraying the red HUGO logo have all been labeled and used to train the YOLO
v8 object detection model [7]. On top of that, several regularization images have
been added in the form of badly generated logos. In this manner, the model
became less prone to detecting badly generated logos, as often a red box was
enough to be detected as one of our logos. Image augmentation was implemented
using small rotation, zoom crops and brightness alterations. This increased the
size of our data set from 210 images to 630 images. A final mAP score of 0.995
at a confidence threshold of 0.5 was achieved after training the model using the
set-up above. As can be seen on the left-hand side of Fig. 4, the object detection
model manages to recognize the logo in generated samples. From the images on
the right, however, it is clear that it is prone to classifying object with faulty
spelling, or even red-colored rectangles in general.

Experimentally, it was found that our object detection model is still very
prone to classifying badly generated images when the spelling was similar, or
worse, plain wrong. Therefore another metric for evaluation was implemented in
the form of Optical Character Recognition (OCR). EasyOCR by JaidedAI [12]
was used to recognise and evaluate the text generated in the images.
The final metric is a combination of the confidence score assigned by the ob-
ject detector and whether correct spelling of HUGO was found in the picture.
Concretely, with a threshold of 0.70, which experimentally we have found to be
the best value, the maximum confidence score per picture was taken (if any logo
was detected). The maximum is to ensure that if there was a good logo in the
picture and a bad logo, we would not punish the model since one good logo was
generated. Using OCR, a score of 0 or 1 was assigned per picture, indicating
whether the word hugo was detected in the picture. Alterations in the form of
capitalised letters and 0’s instead of o’s were also accepted.

4.3 Prompts

The prompts that were used during training differ slightly between Dream-
booth and the other two methods. For the first, all images were labeled as a
red hugo logo logo, in accordance to [16]. For LoRA and Textual Inversion, all
the images were labeled by hand. All of the labels included our unique identifier,
followed by the class noun: red hugo logo logo. Some examples can be seen on

12 J.F.M. De Man

Fig. 4: Four examples of the YOLO object detection on generated images.

Fig. 3. These labels serve as the text prompt during training. During the training
process, images were sampled every 3 epochs, using the following prompts:

A red_hugo_logo

A male model wearing a blue red_hugo_logo sweater

A female model wearing a green red_hugo_logo t-shirt

The latest red_hugo_logo products

A billboard with the red_hugo_logo

The new red_hugo_logo fragrance perfume

5 Results

During training, the six prompts described in section 4.3 were sampled and used
for evaluation after every three training epochs. For LoRA models, eight images
per prompt (per three epochs) were generated. None of the pictures displayed

Fine-Tuning Methods for Diffusion Models 13

are cherry-picked.
According to our evaluation method, Dreambooth fine-tuning trumps the other
models by a large margin, its best 2 models have the object detector detect the
logo in every single sample, in our first model even with a average confidence
score of almost 95%, as can be seen in Table 2. It also leads the charts following
our OCR evaluation. In contrast, Textual Inversion model’s samples have a very
low OCR score, it’s best model scoring only 2 out 6 correctly spelled images.
Although the same model scored decently on the object detector evaluation, for
which 5 out of the 6 images had a logo detected. The LoRA models score rela-
tively well on the OCR evaluation, but their samples failed to generate a similar
logo at a lower rate, compared to both Dreambooth and Textual Inversion. In
the best samples, it detected 38 out of 48, which is a lot lower when compared
to the 100% success rate using Dreambooth.

Table 2: The best 3 models per fine-tuning method and the results of their evalu-
ation. Dreambooth (DB), Low Rank Adaptation (LoRA) and Textual Inversion
(TI) model’s best epoch per parameter combination are displayed. The param-
eters signify the UNet learning rate (DB), the text encoder learning rate (TE),
and for LoRA the aforementioned learning rates and the rank of the embedding,
respectively.
method parameters mean(OCR, OD) mean OD score mean OCR score

DB 2e-5 0.724898001 0.949796001 0.5

DB 5e-5 0.706286823 0.912573646 0.5

DB 1e-5 0.634524385 0.602382104 0.666666667

LoRA 5e-06, 1e-4, 16 0.594578506 0.709990345 0.479166667

LoRA 5e-05, 5e-06, 16 0.587723781 0.696280895 0.479166667

LoRA 1e-4, 1e-4, 8 0.550702949 0.622239232 0.479166667

TI 1e-3 0.545065025 0.756796718 0.333333333

TI 5e-4 0.291357418 0.582714836 0

TI 1e-06 0.21148403 0.42296806 0

5.1 Dreambooth

The results of the Dreambooth fine-tuning approach depict our logo quite well.
What can be seen in Fig. 5 is that the model tries to replicate pictures from the
data set, instead of generating an image resembling the prompt. The first picture
is very similar to one of the images of a sock in the data set, while the two people
generated on the images to the right of it very much resemble human models
in the data set images. The colors of the prompted clothing, a blue sweater for
the second image, and green t-shirt for the third image, are displayed as black,
which is the only color for these items in the data set. Intermediate checkpoints
provided better results, as depicted in Fig. 6. Prompts that are still related to the
data set, such as the color variations for the sweater and T-shirt, provide very

14 J.F.M. De Man

good results. The rightmost picture, depicting the prompt The new red hugo logo
fragrance perfume, clearly does not show perfume, but rather tries to replicate
an image from the data set.

Fig. 5: Sample images of the Dreambooth model with learning rate 2e-5 at epoch
21. The prompts correspond to the prompts described in 4.3. Its evaluation is
displayed in Table 2 as the first DB model.

Fig. 6: Sample images of the Dreambooth model with learning rate 1e-5 at epoch
12. The prompts correspond to the prompts described in 4.3. Its evaluation is
displayed in Table 2 as the third DB model.

Fine-Tuning Methods for Diffusion Models 15

5.2 Textual Inversion

The samples relating to the results displayed in Table 2 as the best entry for
TI, can be seen on Fig. 7. There are indeed two images that display the logo,
or at least the text. It is clear that the model has an overall idea of what the
logo should look like, but the white font in the leftmost picture, demonstrate the
method fails to capture the details fully. Note that the data set only featured
red logos with black font.

Fig. 7: Samples from the Textual Inversion model with learning rate 0.001 after
15 epochs of training.

From the models that were trained using textual inversion, only the one with
learning rate 0.001 seemed to converge. Other learning rates lead to results that
have a hint of the logos, at best. The second best samples, displayed in Fig. 8,
show that the model was not yet able to successfully capture the logo.

Fig. 8: Samples from the Textual Inversion model with learning rate 0.0005 after
27 epochs of training.

5.3 Low Rank Adaptation

As can be seen in Table 3, according to our evaluation method, the best model
has a high learning rate for the text encoder, meaning it performs textual inver-
sion at a high learning rate and thus converges quite quickly (our best model at
epoch 3). Note that our TI models with this learning rate did not even make it
to the top 3. This makes it clear that a model can converge very quickly with
a low learning rate for the LoRA embeddings and a high learning rate for the
text encoder. It is hard to measure the actual impact of these learning rates
separately, but when comparing UNet5e-06TE5e-05dim16 with UNet5e-
06TE0 0001dim16 at epoch 6, (the third and last entry in Table 3), the higher

16 J.F.M. De Man

Table 3: The 10 best performing models according to our normalized score.
UNet lr, TE lr, rank Epoch Norm. score Mean OD score Mean ocr score

5e-06, 1e-4, 16 3 0.976 0.710 0.479

5e-05, 5e-06, 16 21 0.963 0.700 0.479

5e-06,1e-4, 16 6 0.926 0.7255 0.417

5e-05, 5e-06, 8 24 0.895 0.694 0.417

1e-4, 1e-4, 8 3 0.889 0.622 0.479

5e-05, 5e-06, 32 18 0.875 0.696 0.396

5e-05, 5e-06, 64 27 0.870 0.690 0.396

5e-06, 5e-05, 4 18 0.861 0.703 0.375

5e-06, 1e-4, 16 9 0.853 0.608 0.458

5e-06, 5e-05, 16 6 0.833 0.654 0.396

Table 4: The 5 best performing learning rates according to our normalized score
and their best ranks.

UNet lr, TE lr best dim 2nd best 3rd best

5e-06, 1e-4 16 (0.97) 8 (0.80) 4 (0.79)

5e-05, 5e-06 16 (0.96) 8 (0.89) 32 (0.88)

1e-4, 1e-4 8 (0.89) 4 (0.80) 16 (0.77)

5e-06, 1e-05 64 (0.83) 16 (0.73) 8 (0.73)

5e-06, 5e-05 16 (0.83) 64 (0.74) 4 (0.74)

learning rate for the text encoder improved the score for object detection with
more than 7%, and it also detected correct spelling for 20 out of the 48 im-
ages, which is one more than for the model with a low learning rate for the
text encoder. As can be seen in Table 3, a rank of r = 16 seems to trump the
other models. When inspecting the training loss of UNet5e-05TE5e-06dim16,
displayed in Fig. 9 and its samples in Fig. 10, it seems that the model starts
overfitting after around 24 epochs. The logos become more distorted, mostly
in the sense that the text becomes bolder, and faces start to deform. Similar
patterns can be seen in other sampled images when a certain sweet spot has
been passed. When comparing the rank of the LoRA embeddings, as seen in
Fig. 11, it can be seen that the model overfits more easily on lower dimensional
embeddings. This is especially clear when comparing the images for A billboard
with the red hugo logo. In the lower ranks, the model started overfitting already,
while in the highest rank, rank 64, it looks like the model is still learning the
logo. The other pictures at the highest rank also do not show distortion, apart
from where it is still learning how to generate the logo, but the human models
are still realistic and of high quality.

Fine-Tuning Methods for Diffusion Models 17

Fig. 9: The average training loss of model UNet5e-05TE5e-06dim16 plotted
per epoch. Red lines indicating the 21st and 24th epoch.

6 Limitations and Future Work

While it is shown that these fine-tuning methods can perform well for one data
set, it is not clear whether these methods and parameters would work equally
well on other data. Therefore, more experiments need to be carried out using
other data sets in order to conclude these methods and findings are generalizable.
Furthermore, prior loss preservation [16], adding more images to the data set of
the same label (e.g. pictures of other logos), for Dreambooth fine-tuning could
reduce the risk of overfitting. Although output for this method suggested that it
recreated images from the training data with prompts that were not related to
our logo at all. Experiments using inference methods such as Attend-and-Excite
[1] and Composable Diffusion [9] have been carried out in order to increase
promptual accuracy in the output.These inference methods could aid in guiding
the model better to follow the input prompt. This could aid in consistency, for
LoRA models, and even reduce the effects of overfitting. The time limitation have
diverted our focus towards the fine-tuning methods. Attend-and-Excite, however,
delivered promising results at the expense of more compute. The evaluation
method implemented in this work does not take the into account how the prompt
relates to the output pictures, leading a highly overfit model to the best method
according to our evaluation. A third evaluation metric could be added, such that
these promptual failures would be accounted for. One such method could be to
use the CLIP model to regress the image over possible prompts for each image
[11]. If we take the example of the blue sweater, the input for the CLIP model
could be the image, and the prompts in the form of [’a blue sweater’, ’a black
sweater’, ’a white sweater’, ’a red sweater’]. The model would compare the image

18 J.F.M. De Man

Fig. 10: Sampled images per 3 epochs of model UNet5e-05TE5e-06dim16.
Every column corresponds to the prompts described in 4.3.

for every prompt, and output the most relevant prompt. A score could then be
calculated, either as a pass or fail, or using the confidence score of the correct
output. This would allow to penalize the methods for promptual failures.

7 Discussion

Fine-tuning large neural networks is a delicate and hard assignment. The nature
of diffusion models and their implementation of random noise, definitely do not
facilitate that process. A second issue that arises is how to evaluate the output.
As is clear from this work, even visually comparative methods do not regard for
model overfitting and generalization.
Generally, since the whole denoising UNet is trained during Dreambooth fine-
tuning, the model tends to overfit on the training data. The images resemble

Fine-Tuning Methods for Diffusion Models 19

Fig. 11: Sampled images after 30 epochs of model UNet5e-05TE5e-06 with
different ranks. Every column corresponds to the prompts described in 4.3.

the data set with a high accuracy, but regardless of the prompt will recreate
pictures from this data set. This leaves the model unusable for abstraction and
defeats the purpose of training such models. Regularization techniques, such as
prior preservation loss could aid with this shortcoming, by adding picture that
have the same label, but are visually different (e.g. other logos) to the training
data. We believe, however, that this would still lead to models unable to produce
vastly different images.
Textual Inversion is computationally cheap and converges fast over high learning
rates. This is great for quick iterations of ideas and to grasp a general concept.
On the other hand, it lacks detailed capturing of subjects, so this might not be
the preferred fine-tuning method for every application. In the industry, it could
serve a good role to help with imagery inspired by the data set, which could be
very useful for aiding in creative processes.
LoRA fine-tuning seems to be in between those two methods. It can converge
very quickly in combination with reasonable learning rate for the text encoder,
and with the combined UNet embedding layer it provides more detailed results.
The output is less consistent in actually generating a logo for every sample, but
this seems to be a nice trade-off when compared to the scalability, expense of
training and the quality of the output. The added weights to the model have
enough impact to be able to faithfully generate the subject, while not being too
dominant over the rest of the model weights which leads to a general model that
is still able to create images vastly different to the data set.
An effective evaluation metric needs to be decided upon depending on the data
set. Object detection is an acceptable evaluation method, but if the data is
limited this might exclude this as an option. As mentioned in section 6, CLIP
classification can be implemented for prompt-image comparison, but manual
work is needed to come up with non-matching prompts. Other evaluation meth-

20 J.F.M. De Man

ods can be used depending on the nature of the data.
This work proves that you do not need a large amount of data in order to fine-
tune a pre-trained model, great results were achieved with as little as 50 images.
In summary, Dreambooth is a great approach if the desired output is very similar
to the data available and there are not compute or memory limitations, Textual
Inversion is able to capture a subject conceptually and requires less compute and
has quick convergence, LoRA with the right training parameters offers a scalable
solution without interfering with the general model’s capabilities, at the expense
of consistency.

References

1. Chefer, H., Alaluf, Y., Vinker, Y., Wolf, L., Cohen-Or, D.: Attend-and-excite:
Attention-based semantic guidance for text-to-image diffusion models (2023)

2. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. CoRR
abs/2105.05233 (2021), https://arxiv.org/abs/2105.05233

3. Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A.H., Chechik, G.,
Cohen-Or, D.: An image is worth one word: Personalizing text-to-image genera-
tion using textual inversion (2022). https://doi.org/10.48550/ARXIV.2208.01618,
https://arxiv.org/abs/2208.01618

4. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. CoRR
abs/2006.11239 (2020), https://arxiv.org/abs/2006.11239

5. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang,
L., Chen, W.: Lora: Low-rank adaptation of large language models (2021).
https://doi.org/10.48550/ARXIV.2106.09685, https://arxiv.org/abs/2106.09685

6. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks
(2019)

7. Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics (Jan 2023),
https://github.com/ultralytics/ultralytics

8. Li, C., Farkhoor, H., Liu, R., Yosinski, J.: Measuring the intrin-
sic dimension of objective landscapes. CoRR abs/1804.08838 (2018),
http://arxiv.org/abs/1804.08838

9. Liu, N., Li, S., Du, Y., Torralba, A., Tenenbaum, J.B.: Compositional visual gen-
eration with composable diffusion models (2023)

10. Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B.,
Sutskever, I., Chen, M.: GLIDE: towards photorealistic image generation and
editing with text-guided diffusion models. CoRR abs/2112.10741 (2021),
https://arxiv.org/abs/2112.10741

11. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable
visual models from natural language supervision (2021)

12. Rakpong, K.: Jaided AI: EasyOCR demo, https://www.jaided.ai/easyocr/

13. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with clip latents (2022)

14. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. CoRR abs/2112.10752 (2021),
https://arxiv.org/abs/2112.10752

Fine-Tuning Methods for Diffusion Models 21

15. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks
for biomedical image segmentation. CoRR abs/1505.04597 (2015),
http://arxiv.org/abs/1505.04597

16. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman,
K.: Dreambooth: Fine tuning text-to-image diffusion models for subject-
driven generation (2022). https://doi.org/10.48550/ARXIV.2208.12242,
https://arxiv.org/abs/2208.12242

17. Ryu, S.: Low-rank adaptation for fast text-to-image diffusion fine-tuning.
https://github.com/cloneofsimo/lora

18. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour,
S.K.S., Ayan, B.K., Mahdavi, S.S., Lopes, R.G., Salimans, T., Ho, J., Fleet, D.J.,
Norouzi, M.: Photorealistic text-to-image diffusion models with deep language un-
derstanding (2022)

19. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training gans (2016)

20. Sohl-Dickstein, J., Weiss, E.A., Maheswaranathan, N., Ganguli, S.: Deep
unsupervised learning using nonequilibrium thermodynamics (2015).
https://doi.org/10.48550/ARXIV.1503.03585, https://arxiv.org/abs/1503.03585

21. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions (2014)

